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Can the presence of molecular-tilt order significantly affect the shapes of lipid bilayer membranes, particu-
larly membrane shapes with narrow necks? Motivated by the propensity for tilt order and the common occur-
rence of narrow necks in the intermediate stages of biological processes such as endocytosis and vesicle
trafficking, we examine how tilt order inhibits the formation of necks in the equilibrium shapes of vesicles. For
vesicles with a spherical topology, point defects in the molecular order with a total strength of +2 are required.
We study axisymmetric shapes and suppose that there is a unit-strength defect at each pole of the vesicle. The
model is further simplified by the assumption of tilt isotropy: invariance of the energy with respect to rotations
of the molecules about the local membrane normal. This isotropy condition leads to a minimal coupling of tilt
order and curvature, giving a high energetic cost to regions with Gaussian curvature and tilt order. Minimizing
the elastic free energy with constraints of fixed area and fixed enclosed volume determines the allowed shapes.
Using numerical calculations, we find several branches of solutions and identify them with the branches
previously known for fluid membranes. We find that tilt order changes the relative energy of the branches,
suppressing thin necks by making them costly, leading to elongated prolate vesicles as a generic family of
tilt-ordered membrane shapes.
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I. INTRODUCTION

The interplay of surface curvature and liquid-crystalline
order finds its fullest expression in the manifold and complex
biological realizations of the bilayer membranes surrounding
cells and intracellular organelles. Helfrich �1� connected
membrane shape and molecular order, by realizing that the
spontaneous curvature of a bilayer membrane could arise
from the spontaneous splay of the ordered rodlike lipid mol-
ecules comprising the membrane. But the biological world
offers richer varieties of orientational order and shape that
remain to be understood. For example, lipid molecules typi-
cally tilt relative to the normal of the membrane �2–4�, and it
has recently become possible to image tilt-ordered domains
on the surface of curved, micron-scale membranes �5�. Fur-
thermore, curvature has proven to play an active role in cel-
lular and subcellular processes �6�. Narrow necks with small
mean curvature but large negative Gaussian curvature are
relevant to biological membranes that compartmentalize
through budding, since this neck geometry allows separate
membrane-bound compartments to be budded off, while
avoiding high-energy membrane shapes. Neck formation is
universal and crucial to the phenomena of endo- and exocy-
tosis �7,8�, viral entry and budding, the traffic of continual
fusion and fission of vesicle and Golgi membrane, and the
interconnections between Golgi stacks �9� and between the
smooth and rough endoplasmic reticulum. Because of the
close association of these phenomena with cell function, it is
crucial to understand the forces on membrane necks and the
constraints on their formation.

In this paper we numerically calculate the equilibrium
shapes of axisymmetric vesicles with tilt order. Figure 1

shows how dramatic the effect of tilt can be. The two
vesicles have the same resistance to bending, the same en-
closed volume, and the same area, but the one on the right
has tilt order whereas the one on the left has no tilt order. As
we review below, the tilt order may be described by a vector
field which is tangent to the vesicle surface. Molecular inter-
actions prefer uniform tilt order, which may be realized on a
surface with zero Gaussian curvature such as a plane or the
surface of a cylinder. But it is impossible to have a uniform
vector field on a surface with nonzero Gaussian curvature,
such as a sphere or the neck connecting the two spheres.
Therefore, uniform molecular order and Gaussian curvature
are incompatible �10,11�. In particular, as long as the mo-
lecular interactions are strong enough, the elongated prolate
shape of Fig. 1 will be preferred over a shape with a neck.

We begin with a brief discussion of the relation of our
work to previous work on membrane shapes and orienta-
tional order. Section III describes our minimal isotropic tilt
model, coordinates, and numerical method. Our analysis and
methods are straightforward, but we describe them here to
make our paper self-contained. In Sec. IV we present the
main results, which are the energy as a function of reduced
volume for several different branches of solutions, and phase
diagrams for shapes. In the final section we discuss the im-
plications and limitations of our analysis.

II. RELATION TO PREVIOUS WORK

The equilibrium shapes of closed fluid membrane vesicles
have been studied theoretically and experimentally for many
years �see �12,13�, and references therein�. In the
spontaneous-curvature model described by Helfrich, a patch
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of membrane has a resistance to bending but is curved in the
absence of external loads �1�. A different approach known as
the bilayer-coupling model accounts for the bilayer structure
of a membrane by imposing a constraint on the number of
molecules in both monolayers �14,15�. Both models predict
the same set of vesicle shapes. However, the spontaneous-
curvature model predicts that most shape transitions are dis-
continuous, while the bilayer-coupling model predicts con-
tinuous transitions �16�. To simplify our discussion, we will
consider the spontaneous-curvature model with tilt order.

As alluded to above, the basic physics governing the in-
teraction of vesicle shape and orientational order is the in-
compatibility of Gaussian curvature and uniform order. This
incompatibility is a local property: a patch of surface with
Gaussian curvature cannot have uniform tilt order. The glo-
bal topology of surfaces also constrains the number and
strength of point defects in the orientation order field, via the
Poincáre-Brouwer theorem, which states that the total defect
strength of a vector field on a surface is equal to the Euler
characteristic �see �17� for an elementary proof�. In our prob-
lem, a point defect is an isolated point where the tilt order
vanishes, and the strength of the defect is the number of
rotations of the tilt order field around that point. For a vesicle
with the topology of a sphere, the total defect strength is +2.
It is natural to suppose that the lowest energy states have two

+1 defects at antipodal points �we shall impose this two-
defect configuration�.

MacKintosh and Lubensky modeled a vesicle with spheri-
cal topology made up of molecules undergoing a transition
from an untilted smectic-A phase to a tilted smectic-C phase
�10�. They found that an initially spherical vesicle elongates
into a prolate shape, with most of the Gaussian curvature
concentrated near the defects that form at the two poles.
They calculated the change in shape for this transition as-
suming fixed area, but they did not constrain the enclosed
volume. Other work has examined the transitions among
spherical, cylindrical, and toroidal vesicles with orientational
order, again without the constraint of fixed enclosed volume
�11,18�. In the current work, we impose the more realistic
double constraint of fixed volume and fixed area, and solve
for the shape. Also, our numerical method allows us to study
shapes with large deflections from the spherical geometry.
Therefore we can study the effect of tilt order on nonspheri-
cal shapes such as the pears and oblates predicted by the
fluid membrane model. Rather than studying the transition in
the tilt order �as in �10��, we focus on the shape effect: the
effect of the tilt modulus Km �the elastic constant governing
the resistance to nonuniform tilt order� on the overall mem-
brane shape.

Topological defects can also form for geometrical rea-
sons, even on surfaces such as tori which do not require any
defects in orientational order. Our work is complementary to
recent work on the formation and interaction of such defects
on a fixed but arbitrarily curved surface �19,20�. Instead of
prescribing the shape and solving for the orientational order
field, we prescribe the positions of two defects and solve for
the vesicle shape and tilt field. We disallow additional defect
formation, and discuss the validity and limitations of this
restriction in Sec. V.

III. THE MODEL AND ITS ANALYSIS

We make several simplifying assumptions in our analysis.
Since the vesicles we consider are much larger than their
constituent molecules, we use continuum mechanics in the
long-wavelength approximation. Thermal fluctuations are
disregarded. We assume that the vesicle shapes are surfaces
of revolution, and the tilt configuration is axisymmetric. In
particular, the defects required by topology are assumed to
sit at the two poles of the vesicle. These assumptions reduce
the partial differential equations governing the shape and tilt
configuration to ordinary differential equations, which
greatly simplifies our calculations. Also, we suppose that the
bilayer membrane is thin compared to the characteristic size
of the vesicle. Since the lipid bilayers are approximately two
nanometers thick �4�, this assumption is highly accurate for
vesicles of micron size and larger. A consequence of this
assumption is that stretching is much more costly than bend-
ing; therefore, we demand that the total area remain constant.
And, although membranes are permeable to water, osmotic
effects resist changes in volume �12�, leading us to fix the
volume. As we explain below, we use a minimal model for
the orientational order, disregarding anisotropic couplings
between the tilt field and the membrane curvature. We also

FIG. 1. Effect of tilt order on membrane shape. Left: fluid mem-
brane with reduced volume v=0.706 and spontaneous curvature
c0=2.4/R0, where R0 is an overall length scale defined in Sec. III.
Right: Tilt-ordered membrane with same parameters and tilt modu-
lus Km=2.0�, where � is the bending stiffness of the membrane.
The arrows represent the tilt order. A +1 defect sits at both the north
and the south poles of the vesicle.
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disregard chiral interactions, which have been shown to be
important in models for lipid tubule structure �21,22� and a
proposed mechanism for budding �23,24�.

We will study how vesicle shape depends on area and
volume in the presence of tilt order. Just as in the case of
fluid membranes, we will see that the bending energy and tilt
stiffness energy terms are scale invariant. This invariance
allows us to vary area A and volume V by changing one
parameter, the reduced volume v �12�. The reduced volume
is the ratio of the actual volume of a vesicle to the volume of
a sphere with the same area as the vesicle. If R0 is the radius
of the sphere with area A, then v=V / �4�R0

3 /3�.

A. Parametrization and geometry

In this section we describe our parametrization and fix the
notation; see �25,17� for general discussions of differential
geometry applied to membranes. We choose the z axis to be
the axis of symmetry of the vesicle and represent points on
the surface of the vesicle by the three-dimensional vector
X�� ,s�= (r�s�cos � ,r�s�sin � ,z�s�), where � and r are plane
polar coordinates in the xy plane, and s is the arclength mea-
sured from the north pole of the surface along a line of lon-
gitude �see Fig. 2�. We define ��s� to be the angle between
the tangent vector �sX along a longitude and the horizontal
axis. Then dz /dr=zs /rs=−tan ��s�, where 0���s���. In
terms of �, we have rs=cos � and zs=−sin �.

An orthonormal basis in the tangent plane of the surface is
given by

ê1 = �sX = �cos � cos �,cos � sin �,− sin ��

ê2 = ��X/���X� = �− sin �,cos �,0� , �1�

where the s and � subscripts denote partial differentiation
with respect to the coordinates s and �, respectively. We
construct the outward normal n̂ to the surface using the or-
thonormal frame:

n̂ = ê1 � ê2 = �sin � cos �,sin � sin �,cos �� . �2�

The metric tensor gij of the surface is given by

gij = �iX · � jX = �1 0

0 r2 � , �3�

where the indices i , j=1,2 label the coordinates s and �,
respectively. As usual, we denote the inverse of the metric
tensor by gij, and we use gij to raise indices. The second
fundamental form Kij is defined by

Kij � n̂ · �i� jX = − ��s 0

0 r sin �
� . �4�

From the second fundamental form we construct the mean
curvature H and Gaussian curvature K:

H � −
1

2
gijKij =

1

2
��s + sin �/r� �5�

K � det�Ki
j� = det�gilKlj� = �s sin �/r , �6�

where repeated indices have been summed over. Note from
Eq. �5� that we use a convention in which the sphere has
positive mean curvature.

We assume that the lipid molecules on the surface of the
vesicle are tilted at a preferred angle with respect to the
surface normal n̂, as in a smectic-C phase �32�. Let the vec-
tor m denote the projection of the directors of the lipid mol-
ecules onto the tangent plane. Since we do not study the
transition between tilted and untilted phases, it is convenient
to normalize m to make �m � =1 well away from topological
defects. In terms of the local orthonormal basis of the tangent
plane, we have

m = B�cos �ê1 + sin �ê2� = Bm̂ , �7�

where the amplitude B vanishes at defect centers, and ap-
proaches unity far from defect cores.

We must assign an energy penalty to nonuniform configu-
rations of the tilt field m. For a flat surface, m is uniform if
the components of m are constant in the standard Cartesian
basis. Thus, a suitable energy density would be proportional
to �im

j�im
j. However, on a curved surface, m can vary with

position not only because mi varies with position, but also
because êi can vary. Furthermore, it is only the tangential
component of derivatives of m that enter the tilt stiffness
terms; normal components add to the resistance to bending
and therefore may be absorbed in the bending energy term,
discussed below. These features are captured by the covariant
derivative

Dim = �im − �n̂ · �im�n̂ = ��im
1 − m2�i�ê1 + ��im

2 + m1�i�ê2,

�8�

where the “spin connection,”

�i = ê2 · �iê1, �9�

is the rate at which the frame 	ê1 , ê2
 rotates about the nor-
mal n̂ as the ith coordinate increases. The covariant curl of
the spin connection is the Gaussian curvature:

r

z
+1 defect

+1 defect

s

1ê

2ê

n̂

ψ

FIG. 2. Vesicle coordinate system and assumed location of de-
fects. The shape is a surface of revolution about the z axis. The
vector ê2 points into the page as indicated by the �.
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K = −
1
�g

	ij�i� j , �10�

where g is the determinant of the metric tensor and 	ij is the
antisymmetric symbol with 	12=1 �17�. We can now see why
Gaussian curvature is incompatible with a uniform tilt field.
Consider a tilt field on a surface of nonzero Gaussian curva-
ture. A tilt field on a curved surface is uniform if it has a
vanishing covariant derivative. Writing Eq. �8� in terms of B
and �, we find that Dim=0 implies �iB=0 and �i�+�i=0.
Consider a patch on a curved surface that includes no de-
fects, so that � is smooth. Then, to solve �i�+�i=0 for � we
must have 	ij�i� j =0 �17�. Therefore, the tilt field cannot be
uniform on a patch with Gaussian curvature.

For our parametrization, �i= �0,cos ��: the frame 	ê1 , ê2

rotates about the normal as � changes, but not as s changes.
Consistent with our assumption that the shape of the surface
is axisymmetric, we assume that the orientation of the mol-
ecules is axisymmetric as well, with ��B=0 and ���=0.
Therefore,

D�m = B cos �m̂� �11�

Dsm = Bsm̂ + B�sm̂�, �12�

where m̂�=−sin �ê1+cos �ê2, Bs=�sB, and �s=�s�.

B. Free energy

The free energy F of the vesicle is the sum of terms as-
sociated with the bending of the vesicle and terms associated
with the tilt vector order parameter field: F=Fb+Fm. We use
the Helfrich model for bending energy,

Fb =� 
�

2
�2H − c0�2 + �GK��gdsd� . �13�

In Eq. �13�, � is the bending modulus, typically 10–15kBT
�4�, and �G is the Gaussian rigidity. The spontaneous curva-
ture c0 is twice the preferred value of the mean curvature for
a patch of membrane. Spontaneous curvature of a bilayer
membrane can arise either from the sum of the inherent
spontaneous curvatures of the monolayers, or from a differ-
ence in the number of molecules in either monolayer �26�.
Since we consider a closed surface with fixed topology, the
Gauss-Bonnet theorem ensures that the integral of the Gauss-
ian curvature is independent of shape and contributes only an
overall constant to the free energy �33�. Therefore the term
proportional to �G may safely be disregarded.

The elastic free energy Fm for the tilt order is a sum of
many terms, including costs for splay and bend of the direc-
tor field, and many terms coupling the director field to the
vesicle shape �27,28�. To simplify our task, we demand that
the energy be isotropic in tilt, i.e., invariant under arbitrary
rotations of m about the normal n̂. This symmetry rules out
all of the anisotropic terms, leaving only a minimal coupling
of the tilt order to shape:

Fm =
1

2
� 
KmDim

jDimj +



2
�1 − mim

i�2��gdsd� .

�14�

The first term of Eq. �14� gives a preference for a uniform tilt
field. Since we impose isotropy, the free energy density at a
point is independent of the direction of m relative to the
principal directions of curvature. �We discuss how anisotropy
may affect our results in Sec V.� Note that the Frank elastic
constant Km has the same dimensions as �, implying that the
effects of this term are comparable to the effects of the bend-
ing term of Eq. �13�. We know of no measurements of Km in
vesicles, but by dimensional analysis we expect that Km is
comparable to �. This argument gives good estimates for the
Frank constants in three-dimensional liquid crystal systems
�32�. In the absence of concrete measurements, our calcula-
tions will explore a reasonable range of Km /�. The second
term of Eq. �14� gives a preference for �m � =1. We assume
that we are deep in the ordered phase, so that 
R0

2 /Km�1.
The length scale �Km /
 determines the radius of the defect
core, wherein �m� falls steeply to zero.

The shape of the vesicle and the orientation of the tilted
molecules on its surface are determined by minimizing F
subject to a given surface area A and volume V. To impose
these constraints, we introduce Lagrange multipliers � and
P. It is convenient to treat r and � as independent variables
in the variation of the free energy. Therefore, we introduce
an additional Lagrange multiplier function 
�s� to impose the
local constraint rs=cos �. Thus, our task is to minimize

F� � F + �A + PV + �� 
�s��rs − cos ��dsd� . �15�

It is convenient to scale the Lagrange multipliers by �: �̄

=� /� and P̄= P /�. Then F� can be written as

F� = 2���
0

L

f���,�s,r,rs,B,Bs,�s,
�ds , �16�

where the upper integration limit L is the total arclength
along a longitude from the north to the south pole, and

f���,�s,r,rs,B,Bs,�s,
� = r
1

2
�sin �/r + �s − c0�2 + �̄

+
1

2
P̄r sin � +




4�
�1 − B2�2

+
Km

2�
�B2 cos2 �/r2 + Bs

2 + B2�s
2��

+ 
�s��rs − cos �� . �17�

C. Euler-Lagrange equations

The Euler-Lagrange equations which extremize F� are
given by

�s =
U

r
−

sin �

r
+ c0, �18�
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Us =
U

r
cos � + 
 sin � +

1

2
P̄r2 cos � −

KmB2

�r
cos � sin � ,

�19�

Bs =
�W

Kmr
, �20�

Ws = −



�
rB�1 − B2� +

KmrB

�
� cos2 �

r2 + �s
2� , �21�


s =
U2

2r2 −
U

r2 sin � + P̄r sin � + �̄ +
Km

2�

−

B2

r2 cos2 �

+ � �W

Kmr
+ B2�s

2�2� +



4�
�1 − B2�2, �22�

rs = cos � , �23�

�rB2�s�s = 0. �24�

We have introduced two auxiliary functions U and W to ob-
tain first-order differential equations, which are required for
our numerical routine.

The Euler-Lagrange equations can be simplified some-
what by the observation that � is independent of s. Equation
�24� implies that rB2�s is independent of s. However, be-
cause r and B both vanish at the poles, rKm� B2�s=0 every-
where. Since B and r are nonzero only right at the poles,
�s=0 everywhere. This result can be seen more directly by
examining the form of the free energy Fm, Eq. �14�. Since
�s=�1=0, Fm is minimized when � is independent of s.
Note that the isotropy of the energy means that F is indepen-
dent of the angle �. In Fig. 1, for example, we chose to have
the directors aligned with lines of latitude. The choice was
arbitrary—directors aligned along lines of longitude, or any
other direction, would result in the same free energy and
same shape.

For the remaining six equations �18�–�23�, we have six
corresponding boundary conditions. The angle � and radius r
are fixed at either pole: ��0�=r�0�=r�L�=0, and ��L�=�.
The amplitude B at either pole vanishes due to the assumed
presence of defects, B�0�=B�L�=0. However, L is still un-
known and must be solved for along with the shape. To de-
termine L, we reparametrize the problem, introducing a new
independent variable t such that t=0 at the north pole and t
=1 at the south pole: s=Lt, where L is a constant �29�. The
Euler-Lagrange equations �18�–�24� are therefore modified
by replacing d /ds with �1/L�d /dt. Note that the boundary
conditions on r, �, and B at s=L become boundary condi-
tions at t=1. The additional equation allowing us to solve for
L is dL /dt=0. To determine the additional boundary condi-
tion required by this equation, we consider the symmetry of
the free energy under a constant shift in s. The free energy

density now takes the form F�=2���0
1 f̃dt, where

f̃��,�t,r,rt,B,Bt,�t,
,st� = stf���,�s/L,r,rs/st,B,Bs/st,�s/st,
� ,

�25�

and st=L. Since s�t� does not appear explicitly in the free
energy density, there is a first integral or Hamiltonian func-

tion � f̃ /�st which is independent of t. Examination of the

variation of f̃ with respect to s�t� leads to � f̃ /�st=0 at t=1,
implying that the Hamiltonian function vanishes everywhere.
Writing the Hamiltonian explicitly in terms of the dependent
variables at t=0 yields the desired boundary condition 
�0�
=0 �16,29�.

To complete our specification of the shape equations, we
describe how we implement the constraints of fixed area and
volume. It is convenient to regard area as a function of t. We
define A�t� as the area of the portion of the vesicle surface
north of the line of latitude corresponding to t, with a similar
definition for V�t�. Then

At = 2�rL �26�

Vt = �r2 sin �L �27�

�̄t = 0 �28�

P̄t = 0, �29�

where Eqs. �28� and �29� arise because the Lagrange multi-
pliers are constant, but unknown and shape dependent. The
four boundary conditions corresponding to Eqs. �26�–�29�
are A�0�=0, A�1�=4�R0

2, V�0�=0, and V�1�=4�R0
3v /3. The

scale R0 is set to unity in our numerical calculations. Finally,
the shape is determined by integrating zt=−L sin � with
boundary condition z�0�=0.

Although the Euler-Lagrange equations are nonlinear and
must be solved numerically, it is straightforward to deter-
mine the form of the amplitude B at the centers of the defect
cores. For example, near s=0, we have cos ��0 and r�s.
Therefore, Eqs. �20� and �21� reduce to Bessel’s equation for
s�0:

s2Bss + sBs + � 


Km
s2 − 1�B = 0, �30�

and thus B�s in the core, which has a size set by �Km /
, as
mentioned earlier. Similar considerations apply to the defect
located at the south pole.

In our numerical approach, we treat the Euler-Lagrange
equations as a two-point boundary value problem, using the
MATLAB function bvp4c �30�. We choose 
 /Km=1000 to
make the defect cores small. To avoid the divergences that
occur in the equations when r→0, we solve the equations in
the interval �� t�1−�, where �=0.001. All boundary con-
ditions are now evaluated at t=� or t=1−�. We use Taylor
series to relate the boundary values at these end points to the
values at t=0 and t=1:

���� � ��0� + �t�0�� = �t�0�� �31�

B��� � B�0� + Bt�0�� = Bt�0�� �32�
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��1 − �� � ��1� − �t�1�� = � − �t�1�� �33�

B�1 − �� � B�1� − Bt�1�� = − Bt�1�� . �34�

The constants �t�0�, Bt�0�, �t�1�, and Bt�1� are unknown
parameters that may be determined by the numerical routine
using the conditions

U��� � L�t���r��� + sin„����… + c0r��� �35�

U�1 − �� � L�t�1 − ��r�1 − �� + sin���1 − ��� + c0r�1 − ��
�36�

W��� � LBt���Kmr���/� �37�

W�1 − �� � LBt�1 − ��Kmr�1 − ��/� . �38�

from Eqs. �18� and �20�. We also have


��� = 
�0� + 
t�0�� � 
�0� + 
t���� = 
t���� , �39�

with an error of order �2. The parameter 
t��� is given in
terms of the variables at t=� by Eq. �22�.

IV. RESULTS

For purposes of comparison with the case of a fluid mem-
brane with no tilt order, we have repeated the calculations of
Ref. �16� for spontaneous curvature c0=0 and c0R0=2.4. At
v=1, the vesicle shape is always spherical, with bending
energy 8��. First consider the case c0=0. As v is decreased
from unity, the lowest energy shape becomes prolate, elon-
gating continuously. Upon further decrease of v, the shape
changes discontinuously to oblate, and finally to the stoma-
tocyte shape. At v=0 where the dashed-dotted line in Fig.
3�a� terminates, the stomatocyte shape consists of two con-
centric spheres, spaced infinitesimally close, connected by a
vanishingly thin neck of zero mean curvature, with a total
bending energy 16��. Figure 3�a� shows some of these
shapes, and the free energy vs v over the range for which the
transitions occur. Note that there are two stomatocyte
branches; the upper one �dotted line� is metastable. As the
reduced volume is decreased along the upper stomatocyte
branch, the vesicle height along the z axis decreases and the
shape becomes more symmetric about the horizontal plane
midway between the two defects. The two branches join at
the filled circle, where the stomatocyte shape becomes ob-
late. Figures 3�b� and 3�c� show the effect of tilt order. As
Km /� increases, the prolate branch of solutions has lower
free energy than the oblate branch for a greater range of
reduced volume, until eventually the oblate branch becomes
completely metastable. To understand why tilt order favors
prolate shapes over oblate, note that as v decreases, the pro-
late shapes extend more along the z axis and become more
cylindrical, leading to a greater region of small Gaussian
curvature and approximately uniform tilt order. The oblate
shapes also have regions of small Gaussian curvature, but
these regions are confined to narrow bands near t�0.2 and
t�0.8 �Fig. 4�.

Figure 4 also shows that our assumption that the defects
are constrained to lie at the poles of the vesicle is reasonable.

Defects of positive sign prefer regions of positive Gaussian
curvature �31�. Figure 4 shows that for Km /��0.5, the
Gaussian curvature at the equator is just greater than the
Gaussian curvature at either pole. Thus, for Km�0.5�, we
expect that the configuration with two defects at antipodal
points on the equator might have smaller energy than the
configuration with defects on either pole. Our simplifying
assumption of axisymmetry prevents us from investigating
this possibility. However, as Km /� is increased to unity, the
regions of maximum Gaussian curvature lie at the poles, and
we expect that the minimum energy configuration is to have
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the defects lie at the poles. For the prolate shapes and the
pear shapes considered below, the poles are always regions
of maximum Gaussian curvature. Even for the stomatocyte,
the north pole is the region of maximum Gaussian curvature,
and the Gaussian curvature is roughly constant over much of
the inner surface of the pocket.

A second qualitative effect of tilt order on the c0=0
shapes is that the lower stomatocyte branch develops a limit
point corresponding to self-intersection at the sites of the
defects. These limit points are denoted by open circles in
Figs. 3�b� and 3�c�. Figure 5 shows the phase diagram for the
lowest energy vesicle shapes for the case c0=0 as a function
of the Frank constant. The dashed line shows the values of
Km /� and v for which the stomatocyte shape intersects itself.
For values of v below the dashed line, the prolate branch
again becomes the lowest energy branch of solutions.

Turning to the case c0R0=2.4, we see from Ref. �16� that
the fluid membrane shapes are dominated by prolate shapes
and pear shapes, Fig. 6�a�. Note that the energy scale on the
vertical axis is much less than that of Fig. 3�a� since the
mean curvature required by the constraints of fixed volume
and area is close to c0. The solid dots again denote continu-
ous transitions between pear and prolate shapes. The effect
of tilt order is to increase the energy cost of the pear shapes
relative to the prolate shapes, eventually making the prolate
branch of solutions the lowest energy branch for all v. It is
interesting to note that tilt order does not completely rule out
pear shapes with narrow necks. The phase diagram of lowest
energy shapes in Fig. 7 shows that pear shapes are allowed in
a range of v for sufficiently small Km. The neck of the pear
shape becomes wider as Km increases. For these shapes,
there is a slight reduction in the order B in a narrow band
around the neck.

V. DISCUSSION AND CONCLUSION

Our detailed, systematic calculations show that tilt order
suppresses necks and favors elongated prolate shapes for suf-
ficiently large tilt modulus Km. We calculated the free energy

as a function of reduced volume for several branches of so-
lutions, and showed how increasing the tilt modulus in-
creases the energy of the nonprolate branches relative to the
prolate branches, finally leading to a single family of prolate
shapes.

Our calculation was based on several important assump-
tions. We ruled out many of the possible terms in the free
energy by taking the free energy to be invariant under arbi-
trary rotations of m̂ about the normal n̂. A natural way to
remove this assumption and study the effects of anisotropy
without introducing an unmanageable number of terms
would be to replace Fm with Fd, the one-Frank-constant ap-
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matocyte shapes.
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proximation for the orientational free energy of the directors

d̂ making up the membrane surface �21�:

Fd =
Km

2
� ��id̂ · � jd̂�gij�gdsd� . �40�

To compare Fd with Fm, write d̂=�N̂+m, where N̂ is the

local unit surface normal, and � is determined by �d̂�=1.
Rewriting Fd in terms of intrinsically two-dimensional quan-
tities, we find that

Fd =
Km

2
� �gij�im

k� jmk + �2Ki
jKj

i + miKijKk
jmk

− 2���im
j�Kj

i��gdsd� . �41�

The first two terms of the integrand in Eq. �41� are isotropic.
To see that the term Ki

jKj
i is already accounted for in our

minimal isotropic tilt model, note that a matrix satisfies its
own characteristic equation:

Kk
i Kj

k − Kj
iKk

k + K� j
i = 0. �42�

Using gij to take the trace of Eq. �42� yields Kj
iKi

j =4H2

−2K. We expect that the term miKijKk
jmk leads to a prefer-

ence for the tilt to order along the long axis of a prolate
shape, and an increased bending stiffness along the direction
parallel to m̂. The last term in the integrand of Eq. �41� is
like a spontaneous curvature given by a gradient of the pro-
jected director. Except for the fact that the anisotropic terms
will lead to a preferred direction of m̂ relative to the princi-
pal directions of curvature, we expect that including these
terms would not qualitatively change our results. A more
dramatic change is expected if chiral terms like mi	ijKk

jmk are
allowed. This term can give the vesicle a chiral shape, which
is necessarily non-axisymmetric. It would be interesting to
add this term alone to our minimal model and study vesicles
shapes, as has recently been done for tubules and ribbons
�22�.

The most severe assumption of our model is the assump-
tion of fixed defects at the poles. We have already mentioned
that positive sign defects prefer regions of positive curvature,
which suggests there may be lower energy, non-
axisymmetric shapes than the ones we consider here. Fur-
thermore, recent calculations have shown how a pair of de-
fects of opposite sign can be pulled apart whenever there is a
change in sign in the Gaussian curvature, with the positive
defect migrating to the region of positive Gaussian curvature,
and the negative defect migrating to the region of negative
Gaussian curvature �20�. The magnitude of the curvature in
both regions is important for determining whether or not a
defect pair will unbind. Although we completely disregard
this effect, we expect it will not play much of a role in the
low-energy prolate shapes, since for those shapes there are at
most only narrow bands of mildly negative Gaussian curva-
ture where either end starts to bow out. An important exten-
sion of our calculation would be to lift the assumption of
axisymmetry, and allow both the defect position and number
and vesicle shape to vary. It would be interesting if the tech-
niques of Ref. �5� could be used to experimentally determine
defect position on vesicles with tilt order.

Finally, we have systematically studied the effect of
changing the tilt modulus Km while deep in the ordered
phase. While we have not presented results on the change in
shape due to a phase transition from an ordered tilt phase to
a disordered fluid phase, as in Ref. �10�, we expect that the
effect of increasing the order should be qualitatively similar
to increasing Km.
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